Migrating Large-Scale Air Traffic Modeling to the Cloud
نویسندگان
چکیده
Coordinating nationwide air traffic flow is a large-scale problem. Themodeling process generally involves analysis of massive flight data, and its optimization involves computationally expensive algorithms. This paper uses Hadoop MapReduce, a big data processing model, to facilitate air traffic flow modeling and optimization, where computationally intensive tasks are automatically spread to Hadoop clusters for concurrent executions. The overall wall-clock time of computation is reduced. A nationwide traffic flow management problem that has been previously studied was restructured under the MapReduce framework. The problem aims at minimizing flight delays while respecting system capacities. Due to its temporal and spatial scope, the size of this problem grows to an extent where it is toobig to be solvedon standalone computers. Lagrangian relaxationwas applied to decompose the original problem into a collection of solvable subproblems. The optimization proceeds in two iterative stages: solving subproblems and Lagrange multiplier updates. These two processes are encapsulated in the mapper and reducer functions, respectively. As a result, the optimization is automatically scheduled to run in parallel tasks. The cloud-based air traffic modeling and optimization were validated through running nationwide air traffic optimization instances on a small Hadoop cluster with six nodes. The modeling processing is eight times faster and the optimization is 16 times faster than that running on standalone computers.
منابع مشابه
Large-scale Modeling and Optimization of En Route Air Traffic Flow by
Large-scale Modeling and Optimization of En Route Air Traffic Flow by Dengfeng Sun Doctor of Philosophy in Engineering-Civil and Environmental Engineering University of California at Berkeley Professor Alexandre M. Bayen, Chair The research presented in this dissertation is motivated by the need for balancing the increasing demand and limited capacity of the National Airspace System (NAS), and ...
متن کاملA Near Optimal Approach in Choosing The Appropriate Physical Machines for Live Virtual Machines Migration in Cloud Computing
Migration of Virtual Machine (VM) is a critical challenge in cloud computing. The process to move VMs or applications from one Physical Machine (PM) to another is known as VM migration. In VM migration several issues should be considered. One of the major issues in VM migration problem is selecting an appropriate PM as a destination for a migrating VM. To face this issue, several approaches are...
متن کاملSecurity-Constrained Unit Commitment Considering Large-Scale Compressed Air Energy Storage (CAES) Integrated With Wind Power Generation
Environmental concerns and depletion of nonrenewable resources has made great interest towards renewable energy resources. Cleanness and high potential are factors that caused fast growth of wind energy. However, the stochastic nature of wind energy makes the presence of energy storage systems (ESS) in wind integrated power systems, inevitable. Due to capability of being used in large-scale sys...
متن کاملIMPACTS AND CHALLENGES OF CLOUD COMPUTING FOR SMALL AND MEDIUM SCALE BUSINESSES IN NIGERIA
Cloud computing technology is providing businesses, be it micro, small, medium, and large scale enterprises with the same level playing grounds. Small and Medium enterprises (SMEs) that have adopted the cloud are taking their businesses to greater heights with the competitive edge that cloud computing offers. The limitations faced by (SMEs) in procuring and maintaining IT infrastructures has be...
متن کاملCorrelation of air pollutants with land use and traffic measures in Tehran, Iran: A preliminary statistical analysis for land use regression modeling
Land use regression (LUR) models have been globally used to estimate long-term air pollution exposures. The present study aimed to analyze the association of different land use types and traffic measures with air pollutants in Tehran, Iran, as part of the future development of LUR models. Data of the particulate matter (PM10), sulfur dioxide (SO2), and nitrogen dioxide (NO2) were extracted from...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Aerospace Inf. Sys.
دوره 12 شماره
صفحات -
تاریخ انتشار 2015